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ABSTRACT
Dialogue systems help various real applications interact with hu-
mans in an intelligent natural way. In dialogue systems, the task
of dialogue generation aims to generate utterances given previ-
ous utterances as contexts. Among various spectrums of dialogue
generation approaches, end-to-end neural generation models have
received an increase of attention. These end-to-end neural gen-
eration models are capable of generating natural-sounding sen-
tences with a unified neural encoder-decoder network structure.
The end-to-end structure sequentially encodes each word in an
input context and generates the response word-by-word determin-
istically during decoding. However, lack of variation and limited
ability in capturing long-term dependencies between utterances
still challenge existing approaches. In this paper, we propose a novel
hierarchical variational memory network (HVMN), by adding the
hierarchical structure and the variational memory network into a
neural encoder-decoder network. By emulating human-to-human
dialogues, our proposed method can capture both the high-level
abstract variations and long-term memories during dialogue track-
ing, which enables the random access of relevant dialogue histories.
Extensive experiments conducted on three large real-world datasets
verify a significant improvement of our proposed model against
state-of-the-art baselines for dialogue generation.
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1 INTRODUCTION
Dialogue generation aims to generate natural-sounding replies au-
tomatically to exchange information (e.g., knowledge, sentiments,
etc.) and complete a variety of specific tasks in a conversation
interaction process [35, 44]. In recent years, automatic dialogue
generation has received increasing attention in numerous appli-
cations from e-commerce technical support to personal assistant
tools [1, 2, 7, 29, 30, 36, 44]. Among all these approaches, end-to-
end neural generation models [20, 21, 33, 34, 38, 41] have been
proved to be capable in multiple dialogue system applications with
promising performance. Most of these end-to-end neural genera-
tion models apply encoder-decoder architecture based on recurrent
neural network, which directly maps an input context to the output
response.

However, challenging problems still exist in current neural mod-
els for dialogue generation [6]: (1) Meaningless responses: Given a
wide range of contexts, dialogue systems trained via neural genera-
tion models are still likely to generate short but pointless responses,
such as “ha-ha” and “I don’t know”. Since these neural generation
models are deterministic and shorter responses often have higher
likelihood in posterior inference, these models inject no variation
during the generation of reply [6]; (2) Memory decay: Vanishing
memory is always a challenging problem in the task of dialogue
generation. A dialogue session usually contains multiple turns,
the longer the conversation moves forward, the harder to capture
the long-term memorial dependencies. In particular, the injection
of variability exacerbates the difficulty to capture the long-term
memory. As a consequence, the response generation for long ut-
terance context is extremely hard, which determines the response
generation for long utterance context a rather difficult problem.

In this paper, we aim at developing methods that can tackle
challenges of meaningless response and long-term memory depen-
dencies, simultaneously. As an example, consider a dialogue session
in Figure 1. Compared with Response 1, although both responses
are suitable for the context, Response 2 is more meaningful than its
counterpart. With the dialogue session moving forward, modeling
the utterance dependencies becomes more and more difficult. As
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C1: Why if I chmod 300 a directory can people 

still access files inside the directory ?

C2: Because you have given them permission to

C3: But I took the permission from the 

directory, how can they possible access files 

inside a directory I’ve removed read 

permissions from

R1: I’m not sure what you mean by that

R2: chmod -R 777 /path/to/folder

Figure 1: Two different responses for the same context.

a result, the system generates tedious but reasonable responses.
Three obstacles hinder the diversification of the response, and long-
term dependencies in response generation: (1) utterance sequence
modeling is difficult, as a dialogue session consists of multiple utter-
ances; (2) conversation informativeness should be considered not
only within an utterance but also across the utterances; and (3) as
the conversation goes on, it is important to learn the long-term
dependencies.

Our attempt to tackle above obstacles leads to a novel framework,
i.e., HVMN, aHierarchicalVariationalMemoryNetwork (HVMN).
It combines the spirits of variational autoencoder [18] and memory
networks [39, 40] in a hierarchical recurrent neural network set-
ting and aims to memorize the dialogue histories while retrieving
the memory with a bit of randomness. The hierarchical structure
encodes the utterance sequences, while the variational memory
samples a latent variable for each utterance, conditioned on all the
previous information, and then memory cells are retrieved by the
latent variable. The memory cells keep updated to memorize the
new utterance and the response generation decoder is guided by the
variational memory block. We conduct extensive experiments on
two benchmark datasets and an e-commerce custom-service dataset.
Experimental results show that HVMN outperforms state-of-the-art
baselines and generates more informative responses.

Our main contributions can be summarized as follows:

• We identify the problems of response informativeness, and
long-term utterance dependencies in dialogue generation.

• We build a hierarchical variational memory network model
to generate reasonable, informative, and diversified responses
by bridging the hierarchical architecture and variational
memory network.

Symbol Description
D a dialogue session
U an utterance
w a word in an utterance
M number of utterances in D
m m’th utterance in D
N length of an utterance
V vocabulary
e embedding mapping function
henct encoder hidden state at time step t
hdect decoder hidden state at time step t
hu hidden state of the utterance encoder
hcon hidden state of the context encoder
M memory cells
b variational memory output
z latent variable
P prior distribution
Q posterior distribution
F forget gate
U update gate

Table 1: Glossary.

• The proposed framework is validated by the extensive ex-
periments and outperforms the state-of-the-arts on both
metric-based and human evaluations.

The remaining of the paper is organized as follows. We formu-
late our research problem in §2 and describe our approach in §3.
Then, §4 details our experimental setup and results. Related work
is presented in §5. Finally, §6 concludes the paper.

2 PRELIMINARIES
In this section, we first formulate the dialogue generation task
formally, and then introduce preliminaries of sequence to sequence
models.

2.1 Task Definition
Before getting into the dialogue generation task, We introduce our
key notations and concepts. Table 1 lists the main notation we use.

A dialogue session consists of a sequence ofM turns of utterances
D = U1, ..,UM between two interlocutors. Atm-th turn, given pre-
vious utterancesU1, ...,Um−1, the dialogue generation model aims
to calculate the probability ofUm givenU1, ...,Um−1, i.e., P(Um |U1,
..,Um−1).

Each utterance Um is a variable-length sequence of words, i.e.,
wm,1, ... ,wm,Nm , wherewm,n is the nth word of the utteranceUm ,
and Nm is the length of utterance. P(Um |U1, ..,Um−1) is modeled
by decomposing the probability distribution over both the previous
utterances and the previously generated words:

P(wm,1,...,wm,Nm |U1, ...,Um−1) =
Nm∏
n=1

P(wm,n |U1, ...,Um−1,w<n ). (1)
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Encoder RNN

Context RNN

Decoder RNNMemory

Figure 2: Structure of the hierarchical variational memory network. Orange lines indicate the part of memory reading. Red
line is the part of memory updating. Dashed line denotes our posterior approximation.

2.2 Sequence to Sequence Models
Our work is based on sequence-to-sequence (SEQ2SEQ) models.
Sequence-to-sequence models prevail in natural language modeling
and machine translation tasks [9]. Shang et al. [34], Sordoni et al.
[38] and Vinyals and Le [41] introduced it into conversation mod-
eling. It composed of an encoder, which takes in words sequence of
previous utterances and outputs a fix-sized context vector which
summarizes all previous utterances. It also provides a decoder to
generate the next utterance word-by-word based on the context
vector and the recurrent hidden state through the prediction over a
discrete vocabulary V .

The encoder and decoder process the input sequence and output
sequence based on recurrent neural network (RNN). At each step,
the encoder RNN unit takes in a word and updates its hidden state:

henct = σ (henct−1 , ewt ), (2)

while decoder RNN is computed by

hdect = σ (hdect−1 , ewt , c), (3)

where σ is a nonlinear activation function. It can be as simple as
an element-wise logistic sigmoid function and more complex ones
like long short-term memory (LSTM)[16] or Gated Recurrent Unit
(GRU) [9]. e is a word embedding mapping function. c is the last
hidden state of encoder RNN, which is the summary of the whole
input sequence.

The output distribution of the decoder is used to predict the next
token and is parameterized by a softmax function over an affine
transformation of the decoder RNN hidden state hdect :

Pθ (wt+1 = v |w1, ...,wt ) =
exp(д(hdect ,v))

Σv ′ exp(д(hdect ,v ′))
. (4)

, where д is the affine-transformation function. The model parame-
ters are turned by maximizing the log-likelihood over the training
instances by stochastic gradient descent.

3 HIERARCHICAL VARIATIONAL MEMORY
NETWORK

In this section, we propose a hierarchical variational memory net-
work (HVMN) to model the dialogue generation process. The model
employs a hierarchical RNN to model the dialogue utterances in
both the utterance level and the context level. In particular, a dia-
logue consisting of utterance sequence U1, ...,Um is modeled as:

P(U1, ...,UM ) =
M∏

m=1
P(Um |U<m ), (5)
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As each utterance Um is a sequence of words wm,1, ...,wm,Nm , a
dialogue is then formulated as:

P(U1, ...,UM ) =
M∏

m=1

Nm∏
n=1

P(wm,n |U<m ,wm,<n ). (6)

A variational memory network then utilizes a latent variable and
a memory block to capture the abstract and concrete details and
complex long-term dependencies during the dialogue tracing.When
decoding, the previous generated words of response are also given
as the input to the decoder. The whole architecture is shown in
Figure 2. HVMN learns to generate sequences in four steps:

(1) The utterance encoder RNN encodes each turn of utterance
word-by-word into a fixed-size vector, which is then sequen-
tially given as input to the context RNN.

(2) The context RNN computes a hidden state hconm for m’th
utterance.

(3) Then at variational memory block, a latent variable is sam-
pled to retrieve the memory cells as bm , meanwhile the mem-
ory is also updated with hconm to accumulatively memorize
the current utterance.

(4) The decoder RNN takes hconm and bm as input to generate
the response.

Next, we will first introduce the hierarchical utterance encoding
process through encoder RNN and context RNN in §3.1. Then, we
detail the variational memory reading and updating mechanism in
§3.2. Finally, the response decoding is depicted in §3.3.

3.1 Utterance Encoding
The hierarchical recurrent neural network [37] regards the utter-
ance sequence in two levels: each utterance is composed of a se-
quence of words, and a dialogue is a sequence of utterances.

Based on such observation, for an utteranceUm = wm,1, ...,wm,Nm ,
the utterance encoder RNN maps it to an utterance vector, which is
the hidden state afterwm,Nm is processed. A wordwm,n is encoded
by:

hum,n = σ (hum,n−1, ewm,n ), (7)
where σ is the nonlinear activation function like LSTM or GRU,
ewm,n is the embedding of word wm,n , and hum,n is the hidden
state after processingwm,n . hum,Nm

is the utterance vector hum of
utteranceUm , which can be viewed as the summarization of current
utterance.

Then, the context RNN records the utterance sequence by:

hconm = σ (hconm−1, h
u
m ), (8)

where hconm is the hidden state of context RNN given utterance
vector hum , and σ is the same non-linear activation function in Eq.7.
hconm is the summary of all the observed previous utterances.

3.2 Variational Memory Network
Variational Memory Reading Mechanism.

The model draws bm from memory M using a continuous sto-
chastic latent variable zm :

bm =
I∏
i

Mi
m ⊙ zim , (9)

·

Figure 3: Variational memory reading mechanism.

whereMm ∈ Rdi×dz , zm ∈ Rdi , and ⊙ is Hadamard product func-
tion. Figure 3 illustrates the variational memory reading mecha-
nism.

The latent variable zm is conditioned on all the previous observed
tokens, namely the output of context RNN hconm , and is computed
for each utterance:

P(zm |U<m ) = N (µpr ior (U<m ), Σpr ior (U<m )), (10)

where N (µ, Σ) is the multivariate normal distribution with mean
µ ∈ Rdi and a constrained diagonal covariance matrix Σ ∈ Rdi×di .
zm is inferred by maximizing the lower-bound for each utterance:

log P(U1, ...,Um ) ≥
M∑

m=1
−KL[Qψ (zm |U1, ...,Um )| |P(zm |U<m )]

+ EQψ (zm |U1, ...,Um )[log P(Um |zm ,U<m )], (11)

where KL(Q | |P) is the Kullback-Leibler (KL) divergence between
distributions Q and P . The posterior distribution Qψ approximates
the intractable true posterior distribution:

Qψ (zm |U1, ...,Um )
= N (µposter ior (U1, ...,Um ), Σposter ior (U1, ...,Um )) (12)
≈ Pψ (zm |U1, ...,Um ), (13)

where µposter ior is the approximate posteriormean, and Σposter ior
is the posterior covariance diagonal matrix conditioned on previous
utterances U1, ...,Um−1 and current utterance Um .

The approximate prior and posterior mean and covariance are
computed through a feedforward network, respectively. The former
is conditioned on hconm and the latter is conditioned on both hconm
and hencm+1. A matrix multiplication is performed to compute mean,
and a matrix multiplication function followed by a softplus function
is implemented to output the diagonal covariance matrix:

zpr iorm = µpr ior + Σpr ior ⊙ ϵpr ior , (14)

zposter iorm = µposter ior + Σposter ior ⊙ ϵposter ior , (15)

where ϵpr ior and ϵposter ior are standard Gaussian variables.
Variational Memory Updating

Figure 4 illustrates the variational memory updating mechanism.
For each utterance, the memory Mm is updated with hconm in order
to capture details for long-term dependencies. Inspired by the writ-
ing mechanism of neural turing machines [14], we utilize a Forget
and an Update operation. In particular, the forget gate Fm ∈ Rdi
defines to what extent the value of each memory cell to be erased,
and the update gate Um ∈ Rdi specializes how much information
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·

·

Figure 4: Variationalmemory updatingmechanism. The left
memory block is the old memory and the right one is the
updated block.

of hconm can be written to the memory. Typically, the memory is
updated by:

Mm = Fm ⊙ Mm−1 + Um ⊙ hupdatem , (16)

where Fm and Um are computed by a siдmoid function parameter-
ized with a linear combination of hconm , bm ,Mm :

Fm = siдmoid(hconm , bm ,Mm ) (17)
Um = siдmoid(hconm , bm ,Mm ) (18)

hupdatem is defined as:

hupdatem = σ (hconm , bm ), (19)

where σ is a non-linear activation function like siдmoid or tanh.

3.3 Dialogue Decoding
During dialogue generation, given the observed utterances, the
latent variable zm is drawn from the prior N (µ, Σ). Then, zm re-
trieves bm from the memory cells. Finally, the embedding of last
predicted word ewt−1 , bm , and the output of context RNN hconm are
given as input to the decoder RNN. In particular, the recurrent unit
of decoder is defined as:

hdect = σ (hdect−1 , ewt−1 , h
con
m , bm ), (20)

where σ can be a simple siдmoid function or GRU, LSTM.
The probability distribution of the next token is given by a soft-

max function over hdect :

Pθ (wt+1 = v |hdect ) =
exp(д(hdect ,v))

Σv ′ exp(д(hdect ,v ′))
. (21)

, where д is the affine-transformation function.

3.4 Discussions
The conditional prior distribution over variable zm injects variation
for dialogue generation at the utterance-level, while the conditional
distribution over word tokens performs variation at the word-level.
As zm is constrained by the KL divergence between the prior and

posterior, zm varies slowly along the utterances, and makes higher-
level decisions about what to generate, like the conversation topic,
speaker goals or sentiment of the utterance, which helps model
long-term output trajectories [32]. In Serban et al. [32], zm directly
guides the decoder, which increases the response diversity, however,
the response appropriateness is weakened due to the lack of long-
term memories. As zm is a single vector conditioned on all previous
observed tokens and injected with Gaussian noise, details of the
utterances are unable to be well managed.

In HVMN, the latent variable zm incorporates with the mem-
ory cells, which mimics the random access of relevant histories,
where zm focuses on higher-level abstraction, like topics, senti-
ments, and personalites[22], in the meantime the memory cells
specialize in maintaining the long-term details of the observed ut-
terances.Memory cells are retrieved by the stochastic latent variable
zm , and then updated deterministically with the new utterance.

4 EXPERIMENTS
To evaluate the effectiveness of the hierarchical variational memory
neural model, we list the following questions to guide the reminder
of our experiments:

• RQ1: Is our model effective for generating dialogues? Dose
it outperforms state-of-the-art baselines?

• RQ2: How does our proposed method perform in human
evaluation experiments?

• RQ3: What is the effect of context length for generating
dialogues in our method?

Next, we introduce the datasets in §4.1. The baselines are listed
in §4.2 and evaluation metrics are described in §4.3. Details of the
training setting are described in §4.4.

4.1 Datasets
In order to assess the performance of our methods, we conduct
experiments on three datasets with different styles. Two of them
have been used in previous work [26, 43], and another one is ex-
tracted from JD.com 1. Table 2 provides descriptive statistics about
our datasets.
Ubuntu Technical Corpus

Our first dataset, the Ubuntu Dialogue Corpus [26], is an English
multi-turn dialogue corpus, containing about 500,000 dialogues
extracted from the Ubuntu Internet Relayed Chat channel. A con-
versation begins with an Ubuntu-related technical problem, and
follows by the responses to the questions. We use the preprocessed
dataset. The corpus consists of 448,833, 19,584, 18,920 dialogues of
training, validation, testing, respectively. The corpus is a large and
typically goal driven dataset.
Douban Conversation Corpus

Different from the domain specific Ubuntu corpus, our second
dataset, the Douban Conversation Corpus [43], is a Chinese multi-
turn open domain conversation corpus collected from Douban
groups 2, a popular social networking service in China. There exist
multiple responses for one context. The corpus contains 0.5 million
dialogues for training, more than 20,000 dialogues for validation,
and 5,001 dialogues for test.

1https://www.jd.com
2https://www.douban.com/group
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Corpus #Train #Validation #Test #Avg. Turns #Avg. Utterances #Avg. Words #Vocab
Ubuntu 448833 19584 18920 4.94 7.48 102.21 268487
Douban 501186 20000 5001 7.69 - 130.66 304988
JD 415000 15000 5005 11.83 20.43 266.09 600739

Table 2: Corpus statistics including number of dialogues in training, validation and test sets, average number of turns, utter-
ances, words per dialogue, and vocabulary size.

JD Customer Service Corpus
We collect customer service dialogues from JD.com, named the

JD Customer Service Corpus. The JD customer service corpus con-
sists of online retailing customer service dialogues 3. In JD corpus,
each conversation is between a customer and a customer service
staff. The corpus contains 415,000 dialogues for training, 1,5000
dialogues for validation, and 5,005 for the test. The average number
of turns and utterances in a dialogue session are much larger than
the above two corpus.

4.2 Baselines
To evaluate the effectiveness of HVMN, we make comparisons
between the proposed HVMN and the following state-of-the-art
neural dialogue generation models in our experiments:

• SEQ2SEQ: It is a sequence-to-sequence dialogue model, also
known as the recurrent encoder-decoder model [34, 41]. As a
widely-used neural machine translation approach, SEQ2SEQ
has been successfully applied to dialogue generation [41].

• HRED: It is a hierarchical encoder-decoder model for dia-
logue generation [33].

• VHRED: It is a latent variable hierarchical recurrent encoder-
decoder model [32].

4.3 Evaluation Methods
We divide our evaluation metrics into automatic evaluation metrics
and human evaluation metrics.

Automatic Evaluation Metrics
Evaluating dialogue system is not a trivial problem [25]. Liu

et al. [25] disclosed that word-overlap automatic metrics like BLEU
[28] or ROUGE[24] are not well correlate with human evaluations
regarding response quality. To evaluate the semantic relevance
between the candidate response and target response, we adopt three
embedding-based topic similarity metrics proposed by Liu et al.
[25]: Embedding Average (Average), Embedding Extrema (Extrema)
and Embedding Greedy (Greedy) [11, 27, 31]. The embedding-based
metrics actually calculate the similarity between the generated
response and the actual response in the embedding space, which
are alternatives to word-overlap based metrics and actually take
the meaning of each word into consideration.

We use the publicly available Word2Vec4 to train word embed-
ding. For English, we train word embeddings on Google News
Corpus, while for Chinese, the word embeddings are approximated
on Chinese Giga-word corpus 5 [13], segmented by zpar6 [45].

3We release the corpus at https://github.com/chenhongshen/HVMN.
4https://code.google.com/archive/p/word2vec/
5We use version 5 in our work.
6https://github.com/SUTDNLP/ZPar

Sentence-level embedding is approximated by aggregating the in-
dividual embeddings of words in the sentence. With the sentence-
level embedding, the candidate response and target response can
be measured by standard similarity metrics, e.g. cosine similarity.

To evaluate the informativeness of the response (contrast with
the general dull and ’safe’ responses), we propose an average tri-
gramword entropymetric. In particular, for a wordwn in a response
U , the trigram word entropy is defined as:

H (wn ) = −p(wn |wn−2,wn−1) log(p(wn |wn−2,wn−1)). (22)

The trigram model is trained on the training set of each corpus.
Human Evaluation

To further validate the effectiveness of our model, we compare
the responses from different models on Ubuntu corpus by human
evaluations. We choose Ubuntu corpus because it is a large pub-
lic available domain specific technical dataset. It is much more
convenient to discriminate a better response regarding whether
a technical problem is well understood and tackled. For each se-
quence of utterances, the responses generated by all the systems are
listed in a random order. The system IDs are also anonymized. Each
dialogue sequence is allocated to an evaluator randomly. Evaluators
are requested to choose the responses on two dimensions: appro-
priateness to the context, and informativeness. They first choose a
response that is more appropriate than other responses given the
previous dialogue histories fro a dialogue session. Then, they select
a response that is more informative and useful than other responses.
By utilizing the two dimensions, we hope to discriminate whether
a response is reasonable for a dialogue session and whether it is
informative enough compared with a generic safe dull response.
If the evaluators disagree all listed responses, or if they cannot
understand the dialogue context, they can make no choice and skip.

4.4 Training Procedures
All the models are optimized using Adam [17] with a learning rate
of 0.0002 and a batch size of 80. The hyperparameters and early
stop patience are chosen according to the variational lower-bound.
During testing, we apply beam search with five beams to generate
responses. For VHRED, we set the dimensions of the latent variable
di = 100. For HVMN, a memory block M ∈ Rdi×dz is augmented
with zm , di is set to 10 and dz to 100. The baseline SEQ2SEQ em-
ploys LSTM as the recurrent unit with 1000 hidden units, while
other models utilize 500 hidden units, and the dimensionality of
other parameters are set accordingly. We set the vocabulary size of
Ubuntu corpus as 20000; while we set the vocabulary size of both
Douban and JD as 50000. For all baselines and HVMN, we apply
the truncated back-propagation and the gradient clipping.
In the following subsections, we first look at the overall model
performance on metric-based evaluations. Then, the human-based
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Model Average Greedy Extrema H(w)
Ubuntu

SEQ2SEQ 0.215603 0.168833 0.126480 0.2638
HRED 0.541548 0.411681 0.319299 0.3082
VHRED 0.534103 0.402670 0.306242 0.2878
HVMN 0.558392* 0.422914* 0.322032 0.3002

Douban
SEQ2SEQ 0.024255 0.002961 0.023805 1.2253
HRED 0.030904 0.003817 0.029889 1.5116
VHRED 0.042774 0.005147 0.041703 1.3671
HVMN 0.053293 0.006507 0.051560 3.1042

JD
SEQ2SEQ 0.309752 0.204973 0.279654 0.3219
HRED 0.737606 0.500789 0.675900 0.3286
VHRED 0.609605 0.413422 0.558891 0.3473
HVMN 0.752574* 0.511170* 0.691818 0.3555

Table 3: Evaluations on embedding-based metrics. “*” de-
notes significantly better than VHRED with p ≤ 0.01.
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evaluations are discussed. Last, we present the response examples
for qualitatively evaluation.

4.5 Metric-based Evaluation Results
Table 3 lists the performance of each model. HVMN consistently
outperforms almost all the baselines on three corpora, in terms of
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both the embedding-based topic-similarity metrics and the average
trigram word entropy metric (except the word entropy metric on
Ubuntu technical corpus). The improvements on Douban dataset
are statistically significant (t-test with p ≤ 0.01) on embedding
average and greedy. Not surprised, the performance of SEQ2SEQ
is the worst among all methods on all metric-based evaluations.
VHRED performs better than HRED on all three topic-similarity
metrics on Douban dataset, while HRED actually works better on
both Ubuntu and JD dataset. This is consistent with the fact that
Douban is an open domain social networking conversation dataset,
which is of higher response diversity, while Ubuntu and JD are
domain specific dataset. The better performance of VHRED on
Douban corpus clearly verifies its ability of increasing the response
diversity when comparing with HRED.

For all tested methods, their performance on Douban conversa-
tion corpus is much lower than Ubuntu technical corpus and JD
e-commerce conversation corpus, while the entropies are much
higher. It indicates that the dialogues in Douban corpus are more
informative and much harder for dialogue generation task, which
agrees with the fact that each context in Douban corpus usually
consists of multiple responses. Intuitively, as introduced previously,
Douban corpus is an open domain social networking conversation
corpus, while Ubuntu technical corpus and JD customer service cor-
pus are more domain specific. The response diversity differs among
open domain and domain specific corpus. The higher response
entropies on Douban corpus clearly verify such fact.
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Comparison Appropriateness(%) Informativeness(%)
HVMN vs SEQ2SEQ 77.07 : 22.93 84.46 : 15.54
HVMN vs HRED 48.52 : 51.48 58.41 : 41.59
VHRED vs HRED 44.57 : 55.43 52.91 : 47.09
HVMN vs VHRED 53.97 : 46.03 55.56 : 44.44
Table 4: Average differences on human evaluation.

4.6 Effect of Context Length
Figure 5 lists the number of contexts of Ubuntu corpus. Most con-
texts are of lengths 0-50 and 50-100. Figures 6-8 show the perfor-
mance on different lengths of contexts for three embedding-based
evaluation metrics on Ubuntu corpus. Note that we do not show
results in other datasets since we have similar observations. We can
see that HVMN performs better than other baselines at most differ-
ent lengths, while HRED perform the second best. Comparing with
HRED, for the contexts with length less than 50, HVMN performs
noticeable better on Embedding Average and Embedding Greedy
metrics. One possible reason is that, it is harder for short contexts
to generate reasonable responses than regular ones, due to the lack
of effective information. Through manually examining the results,
we observed that baseline models even fail to make meaningful
decisions when predicting the response word-by-word, while with
the variational memory, HVMN is capable of injecting variation for
short contexts. When we looking at the main baseline VHRED, the
performance gap between HVMN and VHRED increases when the
contexts become longer, which demonstrates that HVMN works
better for long contexts than VHRED. It confirms that variational
memory in HVMN is able to provide more power for long term
dependencies.

4.7 Human Evaluation Performance
To further validate the performance, we conduct the human evalu-
ation on Ubuntu dataset. We choose Ubuntu corpus, because it is
easy to specify whether a response is appropriate, and whether a
response is informative enough in technical problem discussing.

Table 4 lists the comparison results. Line 1 and line 4 suggest
that HVMN outperforms its counterparts, namely 77.07 : 22.93 and
53.97 : 46 : 03 on appropriateness, and 84.46 : 15.54 and 58.41 :
44.44 on informativeness. We also notice that VHRED works better
than HRED in terms of informativeness (line 3, 52.91 : 47.09) and
performs worse than HRED with respect to appropriateness (44.57 :
55.43). This suggests that, although Ubuntu is a domain specific
technical dataset, VHRED still improves response informativeness
with a bit loss of appropriateness and HRED tends to make generic
safe and meaningless responses. A straightforward observation is
that a more informative and longer response tends to make more
mistakes comparing with a short and dull response. Therefore, the
appropriateness of VHRED decreases compared with HRED, while
the informativeness increases a lot.

In line 2, HVMN achieves comparable performance on appro-
priateness compared with HRED (48.52 : 51.48). However, HVMN
remarkably outperforms HRED with respect to informativeness
(58.41 : 41.59). This suggests that HVMN maintains its appropri-
ateness while increasing the informativeness. By utilizing the vari-
ational memory, HVMN performs better at generate a diversified
and “right" response in contrast with VHRED.

4.8 Qualitative Evaluation
Table 5 presents examples of generated responses for different
models. It is clear that HVMN performs better at understanding
contexts. The responses of HVMN are not only more appropriate
but also more informative and useful.

Comparing LSTM and HRED, both systems tend to make generic,
“safe” and dull response. LSTM makes short and meaningless re-
sponses for all the cases, while HRED outputs longer responses
and performs slightly better and is more likely to admit that it does
not understand the discussion and fails to give detailed solutions.
Comparing HRED and VHRED, line 3 and 5 in Table 5 indicate that
VHRED tends to output more specific answers. It gives an appropri-
ate linux command for line 3, however, it fails to generate a proper
and effective response for line 5. Generally, HVMN doesn’t make
a generic “yes/no" response but provides detailed and appropriate
operations, especially for line 1 and line 4.

5 RELATEDWORK
Our related work can be classified into two categories: variational
neural model and memory network.

5.1 Variational Neural Model
Kingma and Welling [18] and Kingma et al. [19] introduce varia-
tional neural networks to perform efficient inference and learning
in directed probabilities models on a large-scale dataset. They ap-
proximate the posterior by a neural inference model. The model
parameters are optimized jointly with a reparameterized variational
lower bound using the standard stochastic gradient descent. Bayer
and Osendorfer [3] propose stochastic recurrent networks for music
generation and motion capture modeling. Chung et al. [10] incor-
porate latent variables into the hidden state of a recurrent neural
network. They use the latent variables in token level and apply
for speech and handwriting synthesis. Gregor et al. [15] use it in
images generation, which combines a novel spatial attention mech-
anism that mimics the foveation of human eyes, with a sequential
variational auto-encoding framework that allows the iterative con-
struction of complex images. Bowman et al. [5] develop a variational
auto-encoder for unsupervised generative language modeling. Cao
and Clark [6] tackle the boring output issue of deterministic dia-
logue models by introducing a latent variable model for one-shot
dialogue response. Serban et al. [32] directly utilize the latent vari-
able at the sub-sequence level in a hierarchical setting. Li et al.
[23] employ a variational auto-encoder to describe the observed
sentences and the corresponding latent semantic representations
for multi-document summarization.

Unlike previous models, which directly utilize the latent variable
to guide the generation, the latent variable in our model is used as
a key to read from the memory block and learn to make abstract
high-level decisions during dialogue tracing.

5.2 Memory Network
Memory Network model is first proposed by Sukhbaatar et al. [40]
and Sukhbaatar et al. [39]. Cheng et al. [8] equip the machine reader
with a memory tape, which enables the model to read all the previ-
ous hidden state directly.Wang et al. [42] use an interactivememory
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Contexts Response

hello , I’am using ubunutu 12.04 and have black screen It seems that I have
graphical system X loggeed as root user , but not as my user . Can someone to
end up my problem ? I have ubuntu 12.04 → are you logged on ? and do you
have a text prompt ?

HVMN: yes , I can log in as root , but I am not
able to log in as root
LSTM: **unknown**
HRED: yes
VHRED: yes

hey what command would I use to extract a gz file tar . gz → in which part ?
document , assignment , labs ? → sorry labs → wait a second, my connection
gets slow connection→ oh sorry , can you not see it ? do you know if I have to
extract that . tar . gz → not yet finish :D skydrive was suck → lol its the only
option I had , i could just send you my onenote linke → okey just for your link
I get slower connections :D

HVMN: I am trying to get it to work , but I can’t
find it anywhere
LSTM: ?
HRED: yeah I know , but I have to go to bed , I
have to go to bed :)
VHRED: ok

I’ve been told that du doesn’t count hidden files/directories size toward their
parent directory size , yet in practice it seems du still does it → well read the
manual . because it always did and always will ?

HVMN: that ’s what I thought , but I don’t think
it ’s possible to do that
LSTM: ?
HRED: I know , but I don’t know how to do
that , I just want to know if there is a way to do
it
VHRED: df -h returns nothing ?

Hello . I want to access a ubuntu desktop from windows 7 to know what the
client is doing . How can i do that ? Hello . I want to access a ubuntu desktop
from windows 7 to know what the client is doing . How can i do that ? → Try
Teamviewer → I want to do without the knowledge of client

HVMN You’ll need to set up a VNC server on
the Ubuntu machine .
LSTM: ?
HRED: Sorry , I don’t know how to do that .
VHRED: Then I don’t know , sorry .

Hi there , i’m doing an rsync on a server , ive just looked at it remotely and its
showing as 3 occurrences of it running(via ps aux | grep rsync ) is that normal
? → Do they all look exactly the same or is there any destingueal be difference
→ all look exactly the same : s whats that mean then ?

HVMN The rsync command will tell you if the
rsync daemon is running .
LSTM: **unknown**
HRED: I don’t know what you mean by " **un-
known** "
VHRED: grep " **unknown** . **unknown** "

Table 5: Examples of dialogues generated by various models on Ubuntu corpus. Column 1 lists the context of a dialogue,
whereas Column 2 lists the generated response by different models. “→” denotes a turn exchange.

to enhance the long distance memory ability of the decoder in neu-
ral machine translation. Bordes and Weston [4] employ memory
networks to handle restaurant reservations, using a small number
of keywords to handle entity types in a knowledge base (cuisine
type, location, price range, party size, rating, phone number, and
address). Ghazvininejad et al. [12] adapt it to memorize the relevant
grounded facts for a neural conversation model.

However, all these models read the memories in somewhat a de-
terministic way, while we inject the variability for memory reading
through the latent variable. Another difference is that the memory
is augmented in a hierarchical setting, and is updated to memorize
each utterance.

6 CONCLUSION
In this paper, we have studied the dialogue generation problem and
have identified the main challenges: the long-term dependency and
the informativeness. To tackle these problems, we have utilized
the hierarchical structure, together with the variational memory
to enhance the utterance modeling for dialogues generation. The
two-level hierarchical structure naturally encodes the dialogue
utterances within an utterance and across the utterance sequence.
The variational memory tracks the high level abstraction, memorize
the long-term details of the observed utterances, and randomly

access the dialogue histories. Extensive experiments conducted
on two benchmark datasets and a real-world e-commerce dataset
have verified the effectiveness of our proposed method by showing
significant improvements over multiple baselines in terms of metric-
based evaluations and human evaluations.

Note that, our model is not only limited to dialogue generation
task, it can also be applied to other tasks like machine reading and
summarization. We would like to make further studies in our future
work. Also, we would like to integrate external knowledge base
into the memory block to make the dialogue generation capable of
handling enormous structured knowledge.
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