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ABSTRACT
Query intent understanding is a fundamental and essential task in
searching, which promotes personalized retrieval results and users’
satisfaction. In E-commerce, query understanding is particularly
referring to bridging the gap between query representations and
product representations. In this paper, we aim to map the queries
into the predefined tens of thousands of fine-grained categories
extracted from the product descriptions. The problem is very chal-
lenging in several aspects. First, a query may be related to multiple
categories and to identify all the best matching categories could
eventually drive the search engine for high recall and diversity.
Second, the same query may have dynamic intents under various
scenarios and there is a need to distinguish the differences to pro-
mote accurate categories of products. Third, the tail queries are
particularly difficult for understanding due to noise and lack of cus-
tomer feedback information. To better understand the queries, we
firstly conduct analysis on the search queries and behaviors in the
E-commerce domain and identified the uniqueness of our problem
(e.g. longer sessions). Then we propose a Dynamic Product-aware
H ierarchical Attention (DPHA) framework to capture the explicit
and implied meanings of a query given its context information in
the session. Specifically, DPHA automatically learns the bidirec-
tional query-level and self-attentional session-level representations
which can capture both complex long range dependencies and
structural information. Extensive experimental results on a real
E-commerce query data set demonstrate the effectiveness of the
proposed DPHA compared to the state-of-art baselines.
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1 INTRODUCTION
Accurate Query understanding is crucial for better retrieval results
in various search scenarios. In particular, the major e-commerce
sites usually include billions of products, so customers’ shopping
experience could be improved by finding the best matching cate-
gorizes, and eventually the overall revenue could be increased. For
example, the query could be a function that the customer would like
the product to have, for example “moisture proof", while this query
does not directly include a product name. By finding the the related
product categories from the inventory that can achieve the function,
such as “Dehumidifiers", “Drying box" and etc., the search system
can then return the right products for customers to choose. In this
paper, we aim to identify the customers’ dynamic query intent with
respect to the product categories. For E-commerce, since the prod-
uct inventory is well-maintained by a large amount of resources,
including human labelling a new product when it is newly added,
as well as the automatic tagging models learned from the products’
rich textual information of detailed descriptions, the product cate-
gories have high qualities and fine-grained. Here the fine-grained
product categories are the most determinative and specific words
to describe the product, rather than general categories. We can start
from the product categories and map queries the product category
representations to bridge the gap between queries and products.

Since queries are often short and vague [19], the user behav-
iors which are recognized to include rich information about users’
interests and preferences, have been widely used for query under-
standing [4, 7, 8, 20]. However, there has not been through study
on the characteristics of E-commerce queries and how to link the
queries with the products that the customers would like to purchase.
The query understanding is not a trivial task, and we summarize the
main challenges in finding the best matching product categories for
a query as follows. (1) Non-Exclusiveness: A query may have more
than one correct product categories because of multiple intents of
the query, and synonymous, inclusions and overlaps of product
categories. For example, a query “Samsung" represents a brand
and could mean multiple specific electronics, such as “Cell Phone",
“Headset", “Storage Card", etc.. The categories “Bath Pillow" and
“Spa Cushion" are synonymous which could be complement to each
other. It is also possible that one category includes the meaning of
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another, such as “Rice Container" is one of “Kitchen Organizer". (2)
Dynamic Intents: The intent of the same query may not be the same
with different customers, or even with the same customer under
different circumstances. For instance, “Apple" could mean a brand
with several categories of electronic products, or a type of fruit. (3)
Lack of User Behaviors for tail queries: For the large amount of
long tail queries, there might not be any click information to learn
from.

Inspired by the above challenges, we propose aDynamic Product-
aware H ierarchical Attention (DPHA) framework for learning the
predictive structure from the session information in addition the
the query’s text, which includes all the preceding queries and user
behaviors within a short period of time. The proposed framework
has three major modules. We first build a query-based module,
which has a bidirectional (forward and backward) Recurrent Neural
Networks (RNN) with Gated Recurrent Unit (GRU) to learn the
encoding of the words in the query. Then an attention mechanism
generates dynamic query representations from the word encoders.
The second module is at the session level, which uses self attention
and GRU dropout techniques to learn the dependencies between
the queries and to avoid overfitting. The last step takes the session
annotations and the query annotations as inputs and predicts the
product categories with a regularization from the next query.

The main contributions of this work are summarized as follows.

• We thoroughly analyze query distributions and characteris-
tics for product search in E-commerce. Most previous query
analysis are conducted for Web search, and this paper brings
new perspectives to the query understanding in the specific
product search domain.
• We formally define the query understanding problem in
product search as mapping queries into product categories
with the dynamic user information needs.
• To address the above defined problem with the analyzed
query characteristics, we design a Dynamic Product-aware
H ierarchical Attention (DPHA) framework with regulariza-
tion from the subsequent category which could predict the
dynamic query intent in product search.
• The experiments are conducted on a real large data set from
an E-commerce site, and the results have illustrated the ef-
fectiveness of the proposed framework.

2 RELATEDWORK
There are multiple research directions in query intent understand-
ing, including to recognize the query’s type [1] (e.g. commercial
or noncommercial, navigational or informational), to identify the
intent words in the query [28], or classify queries into target cat-
egories [29], to recognize the named entities and [13] temporal
intent [14]. For search engines in E-commerce sites, our primary
goal is to understand which types of products the customer is look-
ing for. Therefore, we fix a large set of categorizes generated from
the products and then classify the queries accordingly to bridge the
gap between queries and products.

Since the queries are short, the external information are often
incorporated to enrich the query information, including Wikipedia
[18], external probabilistic knowledge base [37], retrieved docu-
ments of the queries [6] and query logs [1]. As a vertical search

in the area of E-commerce, it is not practical to use any external
information outside of the site. All the retrieved products should
be in the site’s stock. Otherwise, even if a query is understood cor-
rectly but it can not be linked to any of the stocking products, it will
still be recognized as a bad case. In this paper, we adopt the search
logs with customers’ behaviors on this site and the corresponding
clicked the product categories for better modelling the query intent.

The query classification technologies include word matching [5],
unsupervised approaches such as topic modelling [3] and building
concept graphs [11], or conventional classification approaches such
as Naive Bayes classifier [39], Gradient Boosting Trees, Support
Vector Machine, Random Forest with manually crafted features
[22], sequential learning model, such as Conditional Random Field
(CRF) [7]. In recent years, the popular neural models are emerging
in various query applications [17, 23, 25, 31], including but not
limited to query suggestion, reformulation, expansion and intent
understanding. Convolutional Neural Networks (CNN) has been
adopted to extract query vector representations as the features for
Random Forest to classify queries in [15]. A deep neural network
is designed for a multi-task retrieval problem including identifying
the query’s search domain as well as document ranking in [24]. By
stacking multiple LSTM units to learn query representations and
using CNN for query classification, the deep model has obtained
higher performance compared to conventional classification ap-
proaches and variations of CNN models in [30]. The Global Vectors
model enriched word embedding vectors with multiple Bidirec-
tional LSTM layers is proposed in [32] to understand query intent.
In this paper, we designed a hierarchical deep learning framework
which learns the query representations, session representations and
predicts the product categories that can best describe the query’s
intent dynamically.

3 PROBLEM DEFINITION AND ANALYSIS
3.1 Preliminaries
For a given query q̃i , the intent of the query might be different
under various scenarios, which could be captured by the preceding
queries and clicked products in the same session. Since multiple
users might search for the same query, and one user may search the
same query for multiple times, a search engine could observe a set
of sessions for q̃i : S̃i = {S̃i,k }

Ki
k=1, where Ki is the total number of

sessions that include q̃i . For each session S̃i,k , it includes a sequence
of queries and corresponding user behaviors for the same user on
the same device within a short period of time. The consecutive user
behaviors in a search session are often recognized to be likely to
reflect similar or correlated search intent. Multiple approaches could
be utilized for session segmentation, and we adopted a commonly
used approach, which separates the sessions if the user has not
issued any query in 30 minutes [16].

A session S̃i,k for the query q̃i is represented as {(q̃i,k, j , p̃i,k, j )}
J
j=1

where J is the length of the session, q̃i,k, j is a query in the session
and p̃i,k, j is the clicked product correspondingly. Here we have
not included the queries without any clicked product, since they
are less informative and more likely to bring noise to the learning
process. In this paper, we focus on identifying the interested prod-
uct category of a search query. Due to the large size of products
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No. Query Preceding Session: (Query, Clicked Category) Intent

1 Watch (Watch, Quartz Watch), (Watch, Watch), (Watch, Quartz Watch) Quartz Watch, Watch
2 Watch (Watch, Men’s Watch), (The horse, Men’s Watch),(Watch, Quartz Watch),

(Watch, Men’s Watch)
Men’s Watch, Watch

3 Watch (Watch, Mechanical watch), (Mechanical Watch, Mechanical watch) Mechanical watch, Watch
4 Apple (Orange, Ugly Orange), (Durian, Fruit), (Children’s leggings, Children’s under-

wear), (Children’s leggings, Children’s pajamas)
Apple, Fruit

5 Apple (Google, Cell Phone), (Samsung, Cell Phone) Cell Phone
6 Apple (Ipad, Tablet), (Surface, Tablet) Tablet

Table 1: Examples of Queries and the Preceding sessions

(usually in multiple millions to even billions), we directly represent
the sessions by product categories to avoid sparseness. Assume
that we have category information for all the products in stock, we
use product category to represent the product item for simplicity
and convenience. If there are multiple fine-grained categories for
one product, only the best matching category is selected. For each
query issued in the session S̃i,k , (q̃i,k, j , p̃i,k, j ) is composed of query
words in q̃i,k, j and the category words in p̃i,k, j .

The goal of our query understanding problem is defined as
to predict the query intent at the time of the customer issuing
the query q̃i , given the session information before q̃i , which is
{(q̃i,k, j , p̃i,k, j )}

jc
j=1, where jc is the last position before the occur-

rence of q̃i in the session. For this sequential predictive problem,
only the user behaviours before query q̃i are available for the sys-
tem to access in real application and in the design of our test data
set. Table 1 shows examples of two queries “Watch" and “Apple"
and several short sessions for the queries. The query “Watch" it-
self is a type of products, while the customers’ interest could be
more focused as “Quartz watch" or “Mechanical watch". A vague
query “Apple" could be a brand or a category of fruits. Even with
“Apple" as a brand only, the related product categories could be
“Cell phone", “Tablet", “Laptop", “Desktop" and etc.. the sessional
information could bring additional understanding of the query’s
real search intent. We can see that query qi may have appeared in
the session previously or firstly issued in the session. The user may
switches a couple of topics in the middle of a session as well. For
example in Line Number 4 of Table 1, the customer looks for some
fruits and then children’s’ clothes, and then switches back to fruits.

In the training phrase, the entire session S̃i,k = {(q̃i,k, j , p̃i,k, j )}
J
j=1

could be obtained. The clicked category of the present query q̃i is
used as label, and the subsequent behaviors in the session could
serve as additional information to model. The examples in Table
1 only include short and relatively clean sessions. In practice, the
sessions could be informative as well as noisy. In order make ac-
curate predictions, a model needs to be able to capture the useful
information from the query and the session as well as to eliminate
the irrelevant impacts.

3.2 Query Analysis
We collected 450,294,680 queries from an E-commerce site over 6
months in 2018 to study the distributions of the queries and the
sessions.

Figure 1: Distribution of Queries with Bucket ID and Clicks

Figure 2: Query Distribution over Length

3.2.1 Search traffics and Clicks of Queries. The search traffic (fre-
quency) for a query is the one of the most crucial characteristics
of a query, and many sites employ distinctive search strategies for
queries with different search traffics. We firstly splits the queries
into 10 buckets according to the search frequencies, where each
bucket has approximate the same amount of exposures. A smaller
bucket number indicates more frequent queries. Since the range
of the numbers in the buckets is very large, we plot the log of
these numbers in Figure 1. Different colors in the bar chart indicate
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Figure 3: Heatmap of Session Length andNumber of Clicked
Queries (The values are transformed by the log function.)

whether the queries are clicked or not during 6 months period. We
can see that most top and torso queries are clicked, while the tail
queries are rarely clicked. There is no direct user behavior informa-
tion for the unclicked queries, and thus they are more difficult to
classify.

3.2.2 Lengths and Category Words of Queries. We further analyze
the query length and product category words distribution in the
queries. Overall, the query length ranges from 1 to around 100,
and the average is around 8-9 characters. The details are shown in
Figure 2. Since the longer queries are rare, we only plotted queries
with a length of less than 25. We can see that queries with a length
of 7 have the largest amount and the amount gradually decreases
for longer and shorter queries. Moreover, some queries include the
product category words explicitly while the others not. In total,
71% of queries have product category words. In the figure, shorter
queries (with a length around 3,4) tend to have a lower rate to
include the category words.

3.2.3 Analysis ofQuery Sessions. A session is a sequence of consec-
utive queries with user behaviors. We follow the common practice
in Web search log analysis by using 30-minute timeout for ses-
sion segmentation [16]. We analyzed all the 180,730,032 sessions
in 7 consecutive days. The average session length is 9.82, and the
averaged number of clicked queries per session is 3.21. The ses-
sion length is much long than reported in web search [19, 27]. In
E-commerce, customers may spend longer time on browsing and
comparing products. Figure 3 illustrates the details for the session
length and the number of clicked queries. We grouped the number
of sessions and clicked queries into number of 5 intervals to show
the aggregated results. The numbers are transformed by a log func-
tion because of the large range. Even though many of the sessions
are short, we can see that the customer may be active for very long
sessions (around 100 queries in the sessions). We have very rich
session context information to study user behaviors for various

applications in E-commerce, especially for query understanding in
this paper.

4 METHODOLOGY
In this section, we propose a Dynamic Product-aware H ierarchical
Attention (DPHA) framework and discuss the details of its compo-
nents.

4.1 A Product-Aware hierarchical Framework
The overall framework is shown in Figure 4. We aim to capture the
sessional information including the preceding queries and clicked
product categories. The framework is designed according to the fol-
lowing characteristics of query intents. The query intent is dynamic
across sessions, and different preceding queries have different influ-
ences on the present query’s intent. In a finer granularity, the words
in a query would contribute to the query’s semantic meaning un-
equally. The basic idea of the proposed framework is to jointly learn
a representation for each query and its preceding user behaviors in
the same session. In particular, we first encode words of each query
and generate the query’s representation with word-level attention.
And then the session-level attention is used to extract the most
important information in all preceding queries. Finally, a hybrid
representation of a query and its session is then adopted for model
inference, where a future factor is incorporated as regularization.

4.2 Attentional Query Intent
At the query level, we treat the present query q̃i and the preceding
queries in the session differently, since we do not have user behav-
ior information for the present query at the time of prediction. For
preceding queries, its words and the the corresponding clicked cate-
gory are informative to understand the semantic intent of the query.
Therefore, both query words and the category words are embedded
from one-hot representations. Here we use RNN to learn the words’
dense representations to model the sequence in the words. The long
term dependencies among the words could be captured by Long
short-term memory (LSTM)[34] and Gated Recurrent Unit (GRU)
[9]. Here we adopt GRU as a basic RNN cell since it has a relatively
simpler structure which has less computational complexity [12].
The activation of GRU is a linear interpolation between the pre-
vious activation and the candidate activation [10]. It calculates a
series of latent state vectors according to the inputs and previous
state vectors. The single layer GRU computes the hidden states as
follows.

ri,k, j,m = σ (Wrxi,k, j,m + Urhi,k, j,m−1)
zi,k, j,m = σ (Wzxi,k, j,m + Uzhi,k, j,m−1)

hi,k, j,m = (1 − zi,k, j,m )hi,k, j,m−1 + zi,k, j,m ĥi,k, j,m

ĥi,k, j,m = tanh(Wxi,k, j,m + U(ri,k, j,m ⊙ hi,k, j,m−1)

where hi,k, j,m is the new hidden state, ri,k, j,m is the reset gate
to decide how much of the past information to forget, zi,k, j,m is
the update gate to decide how much hi,k, j,m updates, σ (·) is the
sigmoid function, Wr , Ur , Wz , Uz , W, and U are parameters. For
a preceding query, xi,k, j,m is an input from the query words and
product category words in (q̃i,k, j , p̃i,k, j ). For the present query,
xi,k, j,m is an input from the query words in q̃i only, since the
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Figure 4: The Proposed DPHA Framework

clicked product category information is for prediction. To learn the
full context information of the input query words and product cate-
gory words, we exploit bidirectional GRU which generates forward
hidden states

−→
h i,k, j,m and backward hidden states

←−
h i,k, j,m . The

concatenated annotationConcat(
−→
h i,k, j,m ,

←−
h i,k, j,m ) represents the

summarized information of the whole query at the word xi,k, j,m .
The words in the query and product category contribute differ-

ently to the query understanding task. Then after we obtained the
word encoders from bidirectional GRU, the soft attention mecha-
nism [38] is introduced here to generate the query’s annotation by
aggregating the words’ annotations unevenly.

ui,k, j,m = tanh(Wwhi,k, j,m + bw )
αi,k, j,m = so f tmax(ui,k, j,muw )
qi,k, j = Σmαi,k, j,mui,k, j,m

whereui,k, j,m is a hidden representation of the input vectorhi,k, j,m ,
then uw is a parameter vector which learns the importance of of
the vector space. Here αi,k, j,m yields a probabilistic interpretation
of Attention. Finally, a query vector qi,k, j is the expectation of

the important words. Here we have different inputs for preced-
ing queries and the present query into the attention mechanism
from the outputs of the bidirectional GRU. For the present query,
its query vector represents the weighed sum of the query words
only. And for the preceding queries, its query vector represents the
weighted sum of query words and clicked product category words
annotations. In the next step, we model the dynamic session intent
from the preceding queries.

4.3 Learning Dynamic Self-Attention Session
Intent

Within a session, the customermay reformulate the query in various
forms to serve the same intent, or even search the same query
multiple times and clicked different (categories of) products. Then
we apply multi-head self-attention mechanism [35, 36] to learn
from the session itself. The single scaled dot-product self-attention
function is as follows

Mn (Ŝi,k ) = so f tmax(QWQ
n K(W

K
n )

T
/
√
jc )VWV

n

where Ŝi,k = [qi,k,1; ...;qi,k, jc ] is the sessional input with the
attentional query annotations, jc is the length of the preceding
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session, WQ
n , WK

n , and WV
n are parameters. Multiple linear projec-

tions with parallel heads are employed to jointly capture the focus
on different parts of session sequence. The vectors from multiple
heads are concatenated and linearly transformed as the output of
the self-attention layer.

MultiHead(Ŝi,k ) = Concat(M1(Ŝi,k ), ...,Mnh (Ŝi,k ))W
O

where nh is the total number of attention layers, and WO is the
parameter. To capture the position in the sessional sequence, po-
sitional encodings are added to the input separately for odd and
even dimensions by{

PE(j,2l+1) = sin(j/100002l/de )
PE(j,2l ) = cos(j/100002l/de )

where j is the query’s position in the session, l is the dimension
and de is the total dimension of the embedding. The session’s em-
bedding representation is generated with the ability of capturing
the influence between any queries in the session by ignoring the
distances. This is particularly useful for the dynamic session intent
understanding. The customer’s intent may shift overtime and back-
and-forth, for example, in the 4th line of Table 1, the customer was
initially searching for some fruits, then thought about children’s
clothes, and came back to the original intention of buying fruit
again. The preceding queries in the session that are farther have
quite significantly influential to the present query.

Moreover, the shifting of customers’ intention in the same ses-
sion might bring noise to the present query understanding. Some
totally random queries may come up, and the customer may input
a typo or searched an unintended query by mistake. In this case, we
incorporated the dropout [33] method, which randomly samples
units for the next layer. The query units are assumed to present in
the session with a certain probability in the training process.

Similar to the query-level, we then adopt the GRU to encode
the session by learning the sequential information in the session
forwardly from qi,k,1 to qi,k, jc .

ri,k, j = σ (W′rq
′
i,k, j + U

′
rhi,k, j−1)

zi,k, j = σ (W′zq
′
i,k, j + U

′
zhi,k, j−1)

hi,k, j = (1 − zi,k, j ) hi,k, j−1 + zi,k, j ĥi,k, j
ĥi,k, j = tanh(W′ q′i,k, j + U

′(ri,k, j ⊙ hi,k, j−1)

where ri,k, j and zi,k, j are the reset and update gates, the inputq′i,k, j
is the output from the previous layer, hi,k, j is the new hidden state,
W′r , U′r ,W′z , U′z ,W′, and U′ are parameters for the session-level
GRU. And then another soft attention layer is applied to generate
the session’s annotation si,k by aggregating the hidden states.

ui,k, j = tanh(W′whi,k, j + b
′
w )

αi,k, j = so f tmax(ui,k, ju
′
w ))

si,k = Σjαi,k, jui,k, j

4.4 Model Inference and Prediction
The present query q̃i ’s intent is predicted based on q̃i ’s textual
words as as well as the sessional information. The representations
from the sessional attention layer and present query attention layer

are features for category prediction. Then a softmax function out-
puts the probabilities for categories.

Pc (v) = so f tmax(Wcv + bc )

where the input v is the concatenation of the session and query
context vectorsv = Concat(Si,k |qi ),Wc and bc are parameters for
the scoring function.

There could be circumstances for a query not having enough
information from the preceding session, for example, a query is-
sued as an early stage of the session did not return satisfactory
results and then the customer rewrite the query with more clear
intent. In such cases in the training data, the insight from the future
information in the session could also be very helpful. However, we
should be careful when adopting such context since it won’t be
available in the real-time system or the testing data. In this paper,
we design a second prediction in the model which serves the pur-
pose of regularization from the future information. First, it uses a
softmax function to predict the multiclass classification separately.

Pf (v) = so f tmax(Wf v + bf )

Then we utilize the combined cross entropy as the metric in our
loss function which is defined as follows:

L = −Σv (yc loд(Pc (v)) − λv ∗ Σv (yf loд(Pf (v))

where yc and yf are the clicked categories for the present query
and the subsequent query, and λv is the parameter. Here the second
part in the loss function from the subsequent query passes the
the information in the future to the parameter training process.
In prediction, the framework outputs both Pc (v) and Pf (v). The
predicted present category Pc (v) is used in evaluation, while Pf (v)
will be neglected.

5 EXPERIMENTAL SETTINGS
In this section, we describe the experimental settings including
data sets, parameter settings, evaluations metrics and baselines for
comparison.

5.1 Data Sets and Parameter Settings
We perform extensive experiments with real query log data sets
from a real-world e-commerce site1. When a customer accesses the
site, a query is issued and then the relevant product maybe clicked.
The logged data sets includes the entire sequence of queries and the
clicked/non-clicked product information. We collected session data
for 14 days in March 2019, where the training data set is obtained
from the first 7 days, and we sampled the testing set from the
last 7 days of thee data. Since the manual annotations of query’s
intention is expensive to get for a large amount of data, the user
clicked product’s category is used as label for training. The training
set is automatically generated with 19,034,352 randomly sampled
entries, each of which includes a preceding session, a present query,
a present product category, and a subsequent product category. The
product category set is obtained from the e-commerce site, which
includes 61,773 categories to predict.

For the testing set, we employed stratified sampling [2] based
on the queries’ search engine traffic in order to fairly evaluate

1http://www.jd.com
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the models’ generalized performance. We randomly sampled 200
queries from 10 traffic buckets, and each query include up to 10
sessions in the testing data. For the less frequencies in bucket 8,9 and
10, there are less number of sessions available. So the testing entries
in these three buckets are merged. Different from the training set,
the queries without clicks are included in the testing set, since the
framework may handle all possible queries in real application.In
total, the testing data set includes 15,011 entries, and the generated
results are manually annotated by human experts.

In the proposed framework, the embedding dimensions are all
set to 100 throughout the paper. The maximum number of words in
each query is set to 20, and the maximum queries in each session is
set to 10.We employ 8 heads in the self attention layer. The RMSprop
optimization [26] is adopted in training. 30% of the training data is
used for validation purpose. The proposed framework predicates a
score for each product category and the top ranked categories are
returned as the model output.

5.2 Evaluation Metrics
In this paper, we use the following metrics to evaluate the effective-
ness of query categorization .
• Precision is the fraction of identified categories that are real
intent of the query.
• Recall is the fraction of the correct categories that are suc-
cessfully identified.
• F −Score is the harmonic mean of precision and recall, which
is a single metric to evaluate a model in terms of a balance
between the precision and recall: 2∗Precision∗RecallPrecision+Recall .

Since we are more concerned with the top identified categories
among all the tens of thousands of categories, we evaluate the
proposed framework and the baselines on the above evaluation
metrics for the topmost 3 results, i.e. Precision@1, Precision@2,
Precision@3,Recall@1,Recall@2,Recall@3, FScore@1, FScore@2,
and FScore@3.

5.3 Comparison Baselines
We compare the proposed framework to several sate-of-the-art
models in the area of query-documentation representation and
multiclass classification. The first approach for comparison is a
simple LiteralMatchinд, which is fast and easy to explain. The
second group of approaches are from [21], denoted as ClickGraph
andClickGraph−VG here, are based on the query clicked document
graph. Then for the deep learning baselines, we choose BiLSTM−Q ,
BiLSTM − SQ and DPHA −C without regularization, against our
proposed DPHA. The details are as follows.
• LiteralMatchinд is to match the product category vocabu-
lary with the query words, and returns all the phrases that
are both in the current query and belong to a document cat-
egory. This approach is simple and widely used in many real
applications. It does not consider the context information of
the query or the session.
• ClickGraph is to generate a query representation from its
clicked documents using the approach similar to [21]. We
modified the approach to fit our problem that the document
representations here are not bag of words, instead we use
the product categories to generate the query representations.

The click graph naturally maps the product categorization
information from the products to the queries. In this case, as
long as the user behaviors are enough, it could identify the
user’s intent on the query.
• ClickGraph − VG is another approach proposed in [21],
which is able to deal with the queries without click. It gen-
erates units (unigram, bigram, trigrams) from the clicked
queries, and through click graph to generate the units’ vector
representations, which are product categories in our applica-
tion. Then for the unseen/non-clicked queries, it estimates a
regression function, to generate the queries’ representations
from the associated units. ClickGraph −VG is able to cap-
ture the user behavior information, as well as the context
information of the query.
• BiLSTM − Q firstly uses a bidirectional LSTM model built
on the current query’s words, then predicts the multiclass
classification problem of the product categories with the
word embeddings. For this approach, the context information
within the query is learnt by the bidirectional LSTM layer.
• BiLSTM − SQ builds a bidirectional LSTM model for the
entire session and the current query, and then predict the
categories. This approach considers the context information
in the query, as well as in the entire session.
• DPHA −C is a variation of the proposed framework, which
has the same structure as in Figure 4 except for the final query
category prediction layer. DPHA −C only uses the present
query’s category as output for training the model, while our
proposedDPHA considers both the present query’s category,
as well as looking at the subsequent product categorization
as a regularization.

6 EXPERIMENTAL RESULTS
6.1 Overall Performance
The proposed model DPHA is compared with several state-of-the-
art baselines and the overall results are shown in Table 2. The
top 3 precision, recall and F-score are reported for all the baseline
approaches and the proposed framework. The LiteralMatchinд
approach can find the right intent of the query only when the
query is very well formed by including the categorical words liter-
ally. It is the simplest one and fastest, yet the lowest performance.
The ClickGraph approach has showed good performance in query
understanding in [21] and it outperforms LiteralMatchinд by in-
corporating the user behavior information towards the query. But
this approach can not deal with the queries that do not have any
clicks previously. The ClickGraph − VG could make use of the
query words information directly and generate the categories for
new queries. This is a very strong baseline in query understanding
from web search, and adapted to the area of product search in our
application. We can see that the proposed DPHA framework could
outperform ClickGraph −VG.

For the deep learning based approaches, we discuss how different
type of information and the model structure could contribute to the
problem of query understanding. BiLSTM −Q includes the query
level context information, and it outperforms LiteralMatchinд but
not as well as the other approaches, and even have lower perfor-
mance compared to the other query level approaches ClickGraph
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Model Prec@1 Recall@2 F-Score@1 Prec@@2 Recall@2 F-Score@2 Prec@@3 Recall@3 F-Score@3
LiteralMatchinд 0.693 0.345 0.434 0.428 0.415 0.394 0.298 0.428 0.329
ClickGraph 0.791 0.404 0.503 0.659 0.611 0.595 0.559 0.739 0.600
ClickGraph −VG 0.799 0.407 0.507 0.664 0.617 0.600 0.565 0.746 0.605
BiLSTM −Q 0.788 0.402 0.501 0.625 0.576 0.562 0.521 0.686 0.557
BiLSTM − SQ 0.808 0.413 0.514 0.638 0.589 0.574 0.527 0.694 0.564
DPHA −C 0.846 0.435 0.540 0.680 0.631 0.615 0.562 0.742 0.602
DPHA 0.849 0.436 0.542 0.684 0.635 0.618 0.566 0.746 0.606

Table 2: Comparisons of the model performance

andClickGraph −VG . BiLSTM − SQ integrates the sessional infor-
mation into the classification problem in addition to the query infor-
mation, and promotes the performance compared to BiLSTM −Q .
It indicates that the sessional information is directly quite useful to
query understanding problem. On the other hand, when we look
at the more refined deep framework of DPHA −C and DPHA, our
designed approach showmuch superior results compared to using a
BiLSTM . The hierarchical attention structure with the advantage of
self-attention greatly enhance the model’s performance. Compared
toDPHA−C , using the subsequent product category in the training
phrase could further benefit the effectiveness of the model.

6.2 Dynamic User Intents
Based on the manually annotated testing data set, we also analyze
quantitatively howmuch difference the sessional information could
bring to a query. For our testing set, we extract multiple sessions
per query with a maximum number of 10. The average number of
sessions for all queries is 8.1, since some tail queries are rare to be
observed plenty of times. From the annotated testing set, we ob-
serve that the same query in different sessions could mean different
intentions. In average, a query has 3.7 different meanings out of the
8.1 (47%) sessions, which means it is necessary to distinguish the
query intents with the consideration of the sessional information.
Figure 5 shows more details about the percentage of the sessions
with different intents for the same query. The results are reported
across the query frequencies (Bucket ID in the figure). A lower
bucket ID means the queries have higher frequency. We can see
that the top queries (in Bucket 1) relatively have more determinate
meaning than the others. And the queries in Bucket 2-8 tend to be
more vague, and thus more difficult to predict their categories.

Model Precision@3 Recall@3 F-Score@3
NoClick Click NoClick Click NoClick Click

LiteralMatchinд 0.122 0.300 0.240 0.431 0.152 0.331
ClickGraph 0.417 0.557 0.785 0.736 0.515 0.597
ClickGraph −VG 0.417 0.563 0.785 0.744 0.515 0.603
BiLSTM −Q 0.338 0.519 0.610 0.683 0.412 0.555
BiLSTM − SQ 0.366 0.525 0.690 0.691 0.452 0.562
DPHA-C 0.408 0.560 0.775 0.739 0.508 0.601
DPHA 0.437 0.564 0.803 0.743 0.537 0.604
Table 3: Performance for non-clicked and clicked <ses-
sion,query>

6.3 Non-Exclusiveness of Queries’ Intents
Further, we discuss the number of correct categories of queries
with session-context. For all the entries <session, query> in our

Figure 5: Percentage of Queries with Dynamic Intent in Dif-
ferent Sessions

Figure 6: Number of Correct Categories for a <Session,
Query> in the Testing Set

testing set, the average number of the correct categories is 2.4, and
74% of the entries have more than one query intent. Here only the
categories generated by the proposed approaches and baselines are
evaluated manually. In fact, the query intent could be even more
than these reported. With the Non-Exclusiveness characteristic
of the queries’ intents, the query categorization problem is more
challenging that the goal is to identify all possible correct categories
as well as maintaining high precision.
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(a) Precision@3 (b) Recall@3 (c) F-Score@3

Figure 7: The performance across different frequencies of queries

Figure 8: Precision@3 for different Query Lengths

The detailed analysis of the number of correct categories are
shown in Figure 6. We can see that the most number of the test-
ing samples have two correct categories. The maximum number
of correct categories could be as high as 9. Since the majority of
<session,query> are with less than or equal to 3 correct categories,
we mainly focus on the evaluating the model performance at the
top 3 positions.

6.4 Performance over Query Frequency
The performance on different traffics of queries is shown in Figure 7.
Due to the analysis in Section 6.3, we only report the results on the
top 3 positions. We can see that the performance of all approaches
decreases when the bucket ID is larger, where the queries are less
frequent, especially for the tail queries in bucket 7 and bucket 8. It
means that the tail queries are more difficult, which aligns with our
previous analysis in Section 3.2.1. This phenomenon could due to
several potential reasons: The tail queries may not be well formed
and thus not very informative; The tail query word context may
include more noise including typos; The session context informa-
tion for tail queries is not as much as the other queries. We can
see from the Figure 7 that DPHA −C and DPHA have advantages
on all the different types of queries compared to BiLSTM −Q and
BiLSTM − SQ , especiall for the less frequent queries.

6.5 Query Intent Understanding and Click
Behaviors

Here we discuss the model performance in terms of click behaviors,
and the results are shown in Table 3. Our testing set is splitted into
two sets of <session, query> entries with and without user clicks
on the present query, and the model performance are reported on
the top 3 results. The sessions with clicks have higher precision
compared to the non-clicked sessions. The <session, query> that
results to a click behavior are more likely have the characteris-
tics including clear query intent and well-formed context which
lead to better retrieved results. On the other hand, the entries with
clicks have a lower recall compared the non-clicked entries. This is
due to that the non-clicked <session,query> entries have a smaller
number (10% less) of correct categories compared to the clicked
entries. We can see that the proposed DPHA is much more effec-
tive compared to the other approaches on the non-clicked queries
which are more difficult. This is because DPHA framework has a
more advanced model structure which could better understand the
context information in the current query, preceding session and
the subsequent category. Moreover, by better understanding the
queries, it would be quite beneficial to the overall retrieval perfor-
mance, and eventually boost the click through rates of the whole
site.

6.6 Performance over Query Length
The query length distribution has been analysed previously in
Section 3.2. We also discuss how the performance of various models
change over queries with different length. The results are shown
in Figure 8. In general, the DPHA has the best performance on all
types of queries. When we take a look at the query with different
lengths in detail, the precision is always lower when the queries are
very short or long, and reaches the highest when the query length
is around 3 or 4. For a query as short as length 1, it does not have
much word-level context information. In this case, DPHA −C and
DPHA outperforms BiLISTM models significantly, andDPHAwith
additional regularization has more improvement over DPHA −C .

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a new deep neural network architec-
ture DPHA to model the dynamic intents of queries with respect
to different scenarios. It firstly learns the representations for the
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preceding queries and interested product categories with a bidirec-
tional GRU layer with attention. Then the session’s annotation is
extracted from self-attention and GRU with dropouts to capture
the within-session query dependencies. Both the current query
and the session contributes to the prediction layer with an addi-
tional regularization from the subsequent category.We analyzed the
characteristics of queries in the E-commerce domain, and conduct
experiments from real-word data sets. The experimental results for
query categorization show that the proposedDPHAmodel achieves
better performance compared to several state-of-the-art baselines.
DPHA is especially effective for the non-clicked queries. There are
several directions for our future work. One direction is to explore
other underlying factors that could enhance the query intent un-
derstanding problem. Another possible direction is to apply the
proposed framework in the other vertical search domains.
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